31 research outputs found

    Towards Monocular Vision based Obstacle Avoidance through Deep Reinforcement Learning

    Full text link
    Obstacle avoidance is a fundamental requirement for autonomous robots which operate in, and interact with, the real world. When perception is limited to monocular vision avoiding collision becomes significantly more challenging due to the lack of 3D information. Conventional path planners for obstacle avoidance require tuning a number of parameters and do not have the ability to directly benefit from large datasets and continuous use. In this paper, a dueling architecture based deep double-Q network (D3QN) is proposed for obstacle avoidance, using only monocular RGB vision. Based on the dueling and double-Q mechanisms, D3QN can efficiently learn how to avoid obstacles in a simulator even with very noisy depth information predicted from RGB image. Extensive experiments show that D3QN enables twofold acceleration on learning compared with a normal deep Q network and the models trained solely in virtual environments can be directly transferred to real robots, generalizing well to various new environments with previously unseen dynamic objects.Comment: Accepted by RSS 2017 workshop New Frontiers for Deep Learning in Robotic

    Learning with Training Wheels: Speeding up Training with a Simple Controller for Deep Reinforcement Learning

    Get PDF
    Deep Reinforcement Learning (DRL) has been applied successfully to many robotic applications. However, the large number of trials needed for training is a key issue. Most of existing techniques developed to improve training efficiency (e.g. imitation) target on general tasks rather than being tailored for robot applications, which have their specific context to benefit from. We propose a novel framework, Assisted Reinforcement Learning, where a classical controller (e.g. a PID controller) is used as an alternative, switchable policy to speed up training of DRL for local planning and navigation problems. The core idea is that the simple control law allows the robot to rapidly learn sensible primitives, like driving in a straight line, instead of random exploration. As the actor network becomes more advanced, it can then take over to perform more complex actions, like obstacle avoidance. Eventually, the simple controller can be discarded entirely. We show that not only does this technique train faster, it also is less sensitive to the structure of the DRL network and consistently outperforms a standard Deep Deterministic Policy Gradient network. We demonstrate the results in both simulation and real-world experiments.Comment: Published in ICRA2018. The code is now available at https://github.com/xie9187/AsDDP

    GraphTinker: Outlier Rejection and Inlier Injection for Pose Graph SLAM

    Get PDF
    In pose graph Simultaneous Localization and Mapping (SLAM) systems, incorrect loop closures can seriously hinder optimizers from converging to correct solutions, significantly degrading both localization accuracy and map consistency. Therefore, it is crucial to enhance their robustness in the presence of numerous false-positive loop closures. Existing approaches tend to fail when working with very unreliable front-end systems, where the majority of inferred loop closures are incorrect. In this paper, we propose a novel middle layer, seamlessly embedded between front and back ends, to boost the robustness of the whole SLAM system. The main contributions of this paper are two-fold: 1) the proposed middle layer offers a new mechanism to reliably detect and remove false-positive loop closures, even if they form the overwhelming majority; 2) artificial loop closures are automatically reconstructed and injected into pose graphs in the framework of an Extended Rauch-Tung-Striebel smoother, reinforcing reliable loop closures. The proposed algorithm alters the graph generated by the front-end and can then be optimized by any back-end system. Extensive experiments are conducted to demonstrate significantly improved accuracy and robustness compared with state-of-the-art methods and various back-ends, verifying the effectiveness of the proposed algorithm

    Learning with Training Wheels: Speeding up Training with a Simple Controller for Deep Reinforcement Learning

    Get PDF

    Defo-Net: Learning Body Deformation using Generative Adversarial Networks

    Get PDF
    Modelling the physical properties of everyday objects is a fundamental prerequisite for autonomous robots. We present a novel generative adversarial network (DEFO-NET), able to predict body deformations under external forces from a single RGB-D image. The network is based on an invertible conditional Generative Adversarial Network (IcGAN) and is trained on a collection of different objects of interest generated by a physical finite element model simulator. Defo-netinherits the generalisation properties of GANs. This means that the network is able to reconstruct the whole 3-D appearance of the object given a single depth view of the object and to generalise to unseen object configurations. Contrary to traditional finite element methods, our approach is fast enough to be used in real-time applications. We apply the network to the problem of safe and fast navigation of mobile robots carrying payloads over different obstacles and floor materials. Experimental results in real scenarios show how a robot equipped with an RGB-D camera can use the network to predict terrain deformations under different payload configurations and use this to avoid unsafe areas

    Defo-Net: Learning Body Deformation using Generative Adversarial Networks

    Get PDF
    Modelling the physical properties of everyday objects is a fundamental prerequisite for autonomous robots. We present a novel generative adversarial network (Defo-Net), able to predict body deformations under external forces from a single RGB-D image. The network is based on an invertible conditional Generative Adversarial Network (IcGAN) and is trained on a collection of different objects of interest generated by a physical finite element model simulator. Defo-Net inherits the generalisation properties of GANs. This means that the network is able to reconstruct the whole 3-D appearance of the object given a single depth view of the object and to generalise to unseen object configurations. Contrary to traditional finite element methods, our approach is fast enough to be used in real-time applications. We apply the network to the problem of safe and fast navigation of mobile robots carrying payloads over different obstacles and floor materials. Experimental results in real scenarios show how a robot equipped with an RGB-D camera can use the network to predict terrain deformations under different payload configurations and use this to avoid unsafe areas.Comment: In ICRA 201
    corecore